432 research outputs found

    Unsupervised feature learning with discriminative encoder

    Full text link
    In recent years, deep discriminative models have achieved extraordinary performance on supervised learning tasks, significantly outperforming their generative counterparts. However, their success relies on the presence of a large amount of labeled data. How can one use the same discriminative models for learning useful features in the absence of labels? We address this question in this paper, by jointly modeling the distribution of data and latent features in a manner that explicitly assigns zero probability to unobserved data. Rather than maximizing the marginal probability of observed data, we maximize the joint probability of the data and the latent features using a two step EM-like procedure. To prevent the model from overfitting to our initial selection of latent features, we use adversarial regularization. Depending on the task, we allow the latent features to be one-hot or real-valued vectors and define a suitable prior on the features. For instance, one-hot features correspond to class labels and are directly used for the unsupervised and semi-supervised classification task, whereas real-valued feature vectors are fed as input to simple classifiers for auxiliary supervised discrimination tasks. The proposed model, which we dub discriminative encoder (or DisCoder), is flexible in the type of latent features that it can capture. The proposed model achieves state-of-the-art performance on several challenging tasks.Comment: 10 pages, 4 figures, International Conference on Data Mining, 201

    A Comparative Analysis of Ensemble Classifiers: Case Studies in Genomics

    Full text link
    The combination of multiple classifiers using ensemble methods is increasingly important for making progress in a variety of difficult prediction problems. We present a comparative analysis of several ensemble methods through two case studies in genomics, namely the prediction of genetic interactions and protein functions, to demonstrate their efficacy on real-world datasets and draw useful conclusions about their behavior. These methods include simple aggregation, meta-learning, cluster-based meta-learning, and ensemble selection using heterogeneous classifiers trained on resampled data to improve the diversity of their predictions. We present a detailed analysis of these methods across 4 genomics datasets and find the best of these methods offer statistically significant improvements over the state of the art in their respective domains. In addition, we establish a novel connection between ensemble selection and meta-learning, demonstrating how both of these disparate methods establish a balance between ensemble diversity and performance.Comment: 10 pages, 3 figures, 8 tables, to appear in Proceedings of the 2013 International Conference on Data Minin

    To go deep or wide in learning?

    Full text link
    To achieve acceptable performance for AI tasks, one can either use sophisticated feature extraction methods as the first layer in a two-layered supervised learning model, or learn the features directly using a deep (multi-layered) model. While the first approach is very problem-specific, the second approach has computational overheads in learning multiple layers and fine-tuning of the model. In this paper, we propose an approach called wide learning based on arc-cosine kernels, that learns a single layer of infinite width. We propose exact and inexact learning strategies for wide learning and show that wide learning with single layer outperforms single layer as well as deep architectures of finite width for some benchmark datasets.Comment: 9 pages, 1 figure, Accepted for publication in Seventeenth International Conference on Artificial Intelligence and Statistic

    Learning to segment with image-level supervision

    Full text link
    Deep convolutional networks have achieved the state-of-the-art for semantic image segmentation tasks. However, training these networks requires access to densely labeled images, which are known to be very expensive to obtain. On the other hand, the web provides an almost unlimited source of images annotated at the image level. How can one utilize this much larger weakly annotated set for tasks that require dense labeling? Prior work often relied on localization cues, such as saliency maps, objectness priors, bounding boxes etc., to address this challenging problem. In this paper, we propose a model that generates auxiliary labels for each image, while simultaneously forcing the output of the CNN to satisfy the mean-field constraints imposed by a conditional random field. We show that one can enforce the CRF constraints by forcing the distribution at each pixel to be close to the distribution of its neighbors. This is in stark contrast with methods that compute a recursive expansion of the mean-field distribution using a recurrent architecture and train the resultant distribution. Instead, the proposed model adds an extra loss term to the output of the CNN, and hence, is faster than recursive implementations. We achieve the state-of-the-art for weakly supervised semantic image segmentation on VOC 2012 dataset, assuming no manually labeled pixel level information is available. Furthermore, the incorporation of conditional random fields in CNN incurs little extra time during training.Comment: Published in WACV 201
    corecore